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A non-diagrammatic method for perturbative calculations in 
field theory 

H C Luckockt and A J McKane 
Depanment of lheoretical Physic$ Universily of Manchester, Manchester MI3 9PL, UK 

Received 17 Febmary 1992 

AbstrpeL Fqinman's diagrammatic approach to perlurbativive quantum field theory Q not 
easily applied unless the interactinns have simp!e power series expansions. In plnieu!nr, 
when the interaction involves non-integer p w e n  of the field, as happens when carrying 
oul the so-called 6+xpansian, the diagrammatic approach must be supplemented with 
mme presniption for the analytic mntinuatian of the exponents. Here we propose a new 
approach to perlurbative field theory which bypasses Wct's theorem, and uses inslead 
lhe tact that the joint probabilily distribution funclion for the fields a1 a finile se1 of 
p i n t s  can k determined exactly from their expectation values, variances and m u l u l  
covariances. One can then calculate expectation values for products of opemion at lhese 
p in ts ,  or a t  least express them as finite-dimensional definite integrals. This technique is 
illustrated by calculating expectalion values for non-polynomial O(n)-invarianl operaton. 

Field theory calculations almost always reduce to some kind of perturbative expansion, 
the zeroth-order starting point being a Gaussian functional integral which can he 
done exactly. Higher-order corrections are then obtained by calculating expectation 
values of interaction terms and their products at different points in space. This is 
conventionally done using Feynman diagrams; however attempts to perform systematic 
calculations in the 6expansion [l] led us to develop the non-diagrammatic techniques 
described in this paper. The reason for this is that in the hexpansion one has to 
consider interaction terms which are not simple power series in the fields; they may 
involve logarithms, for example. To date the approach has been to use Feynman 
diagram techniques for interactions consisting of fields raised to an integer power, 
continuing from the integers to the reals and then differentiating with respect to the 
real exponent. The difficulty is that the continuation is not unique and we found 
that some naive prescriptions gave divergent (nonsensical) results. The new non- 
diagrammatic technique discussed later eliminates the need for analytic continuation 
and moreover can be applied to more general situations. 

Our method is based on the observation that in a free Euclidean theory the 
field may be thought of as a set of correlated random variables with a multivariate 
Gaussian distribution. Consequently, the joint probability distribution of any finite 
subset of these variables can be determined exactly from their expectation values, 
variances and mutual covariances. 

t Present address: School of Mathematics and Slalistia, University of Sydney, Sydney, NSW 2006, 
Australia. 
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3436 H C Luckock and A J McKane 

'lb illustrate this point, let 4 be a scalar field in a free Eucidean theory. The 
functional-integral prescription requires one to assign a weight P[+] to each configu- 
ration 4. Suppose we wish to calculate the expectation value of @"(z) ,  where a is 
any positive real number. Writing 

(Pa(*)) = J dl41 42Yz)P141 

= J d4, J d[41 

= J dr5, 4:e"P[4sl (1 )  

P(4J = Jdl+lP[41a(4a - +(.)) 

- 4(Z))+*"(z)P[41 

where 

(2) 

we see it is possible to reduce the functional integral to a single integral with the 
marginal probability distribution (2) as weight function. Although (2) still seems to 
be a formidably difficult quantity to evaluate, in a free theory the action functional is 
quadratic and so the marginal distribution of 4 at the point 2 is Gaussian. Its exact 
form can therefore be found if the mean and variance of the field is known. 

The same idea goes Over without any essential changes for the case of an 7 ~ -  

component field 4 = (&, . . . ,4%). The marginal distribution 

P(&) = /d[4P[dj6n(dz - 4(z)) (3) J 

will be Gaussian with its exact form depending on the means and variances of each of 
the n components, and the n(n  - 1)/2 mutual covariances between pairs of distinct 
components. 

Suppose now that the theory has an underlying O(n)-invariance, which may how- 
ever be broken by a linear coupling to an external source. Then the matrix of 
covariances between the componenrs is O( n) invariant and has the form 

('$a'#)b) - 4a'& = '-"6,b (4) 

where $a denotes the expectation value of each component, and o2 is their 
common variance; the covariance between any distinct components must vanish. (In 
fact the covariance matrix is just Gob(z,z) where G is the Green function of the 
theory.) The probability distribution for 4 at the point z must then be 

"(4,) = (27ro2)-"'2exp {-I/& - 4((2/2u2).  (5) 

The expectation value of any function of 4 at the point z can be obtained by 
u,rc.gra.rrrlg ""GI ,p, W l l l l  LLLlJ  wwg,,,. 

In this example, the O(n) symmetry ensures that operators of interest will gen- 
erally have the form F( 11411), where 11&11 denotes the magnitude of the vector 4, 

L __-.I. .L:" ... 
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One is often interested in the expectation values of these operators, or the products 
of such operators evaluated at different points in space, given that the expectation 
value of the field itself is specified. 

If n is any non-negative real number, then the expectation value of 116(~)11~" is 

'l',,(a,4,0~) E d n + ( 4 . 4 ) * P ( + ) .  (7) J 
For n = 1, this integral can be evaluated directly using standard results involving 
parabolic cylinder functions [2]. One finds that 

where M (  a ,  b; z )  is a confluent hypergeometric function with power series expansion 

a 2 R ( U + 1 ) 2 '  a ( a + i ) ( a + 2 ) Z 3  
M ( a , b ;  2)= 1 + -- + - +  b l !  b ( b + l )  2 !  b ( b + l ) ( b + 2 )  (9) 

When a is an integer, the expansion terminates and (8) agrees with the results 
obtained using Feynman diagrams. 

Results for n-component fields ( n  > 1) can be calculated in the following manner. 
Because of the O(n) symmetry, one can assume without loss of generality that the 
only component of with a non-vanishing expectation value is &. Defining a new 
variable y = z:=z(4a)z, the remaining O(n - 1) symmetry of the integrand allows 
us to rewrite the measure in (7) as 

Setting y = (&)2 t  allows one to perform the 
result for q1. Performing the remaining integral one then finds that 

integral directly, using the earlier 

A more challenging exercise is to work out expectation values of products of 
operators at different points di) in space. If we know the marginal expectation 
value and mriance of the field at each specified point, as well as the covariance 
between the field variables at any pair of these points (these can be obtained from 
the Green function), then we can derive the exact form of the joint probability 
distribution function for the variables +(di)) since we know that these are Gaussian. 
Thus, the expectation values of the products of any functions of these variables can 
be represented as an ordinary definite integral. The only question is whether this 
integral can be evaluated exactly. 

For example, suppose we have just two points d1),d2), and that the fields at 
these points are denoted +('I and respectively. We assume that these are known 
to have expectation values 4(l) and @) respectively, and that all the components 
have variance u2. The joint probability distribition of +(I )  and is then completely 
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determined by the matrix of covariances between their components, which is exactly 
the same as the Green function G a b ( d 1 ) , d 2 ) ) .  

Since the O ( n )  symmetry is broken only by a linear source term, the covariance 
matrix will have the O( 1-L)-invariant form 

H C Luckock and A J McKane 

- where p k a rea; number between -i ana i. 
function for 

Ine joint probabiiity distribution 
and +(2) will therefore be 

,^\l I 
('3) '1 

/ i , ~ , $ l ) / , 2  + jla+i'qy ,.,.." - 2pL+(:) . 

where A,#,(') E ,$(i) - ,$(i). 

can now be expressed 
as the 2ndimensional definite integral of the function weighted with the probability 
density (13). For example, suppose that a and 0 are non-negative real numhers. and 
that we are interested in the expectation value of the product ( ( ~ ( 1 ) ( ( 2 a ( ( + ( 2 ) ( ( 2 a ,  This 
is just 

The expectation value of any function of &) and 

- ; , ( p , ~ ~ ; a , p ; d ; ( ' ) , d ; ( ~ ) )  ~ d ~ ~ ( ' ) d n + ( 2 ) ~ ~ ~ ( 1 ) ~ ~ 2 ~ ~ ~ ~ ( ? ) ~ ~ 2 ~ F ( ~ ( 1 ) , ~ ( 2 ) ) .  (14) 

Although there seems to be no way of doing this integral directly, it w n  he 
evaluated as a power series in p. (Such an expansion is reasonable, since ( P I  is always 
less than unity and decreases rapidly as the distance between &) and d2) increases.) 

It is easy to show that 

Moreover, when the correlation coefficient p vanishes, both P(+(1j,+(2)) and the 
integral (14) factorize into two independent terms. Consequently, for p = 0 we have 

E,(0,a2; a,p;  $(1) ,$2) )  = Jd"@ 11@(0)122PP(+(')) J d " p  11&1128P(4(2)) 

= - qn(c, p ) , g 2 ) , p n ( p ,  p ,  .2).  (16) 

One can now solve the differential equation (U) subject to the boundary condition 
(16). to obtain 
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where the coefficients C have the form 

Here we are using Pochhammer's notation 

( z ) *  z ( z +  1)(z+ 2 ) .  . . ( z +  n - 1). (19) 

In fact the identity (17) is the special case of a quite general result. If U is a 
random vector whose components (q, . . . ,U , )  have a multivariate Gaussian distri- 
bution with means ( a , ,  . . . , am)  and covariance matrix 

A . .  11 = - ( ~ ~ 2 1 . )  J - f i i G .  1 (20) 

then its probability distribution function is 

One then finds that 

Since the probability distribution is Gaussian, the expectation value of any function 
H ( u )  can be expressed as a function of the mean vector ii and the covariance matrix 
A; 

( H ( u ) )  = d m u  P ( u ) H ( u )  
J 

E A(u,A) .  (i3J 

It is clear from this definition that H obeys the same differential equation (22) 
as P(u). "s, if we know the form of H for a particular choice of Ai,, we can (in 
principle) solve this differential equation to determine (H) for arbitrary U and A. 
Knowledge of (H) when the components ui are uncorrelated can therefore be used 

case of this argument. 
We now show how these results can be used to obtain an expansion of the cffcctive 

action in powers of some (natural or artificial) perturbation parameter a. Suppose 
that a Euclidean theory has classical action S,[+], which is quadratic in 6 when 
a = 0. Introducing a source J(x) ,  we define the generating functionals 

*,. rlntn....:..n ..O ..a f,., "A.:+*,.... ,."...?.l"t:nn. TI.', ,Inr:...ltinn ,.f ,,-I\ ..,-" -"-":"I 
L" " C L C l l l l l l l r  %s "'I!", I", o,",L#a>J w l l C l ' l L I " L I a .  l l l C  " C I . " P L I " . I  " L  (1 ', "U,, a qICLl'Il 

Z,[Jlz I d [ + ]  e x p  { -se[+]+ / d d x J .  d (24) 
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We suppose that for a given configuration 4 there is a corresponding configuration 
J,,6 of the source such that 

H C Luckock and A J McKane 

In fact, 4 is just the expectation value of the field when the action includes a coupling 
to the source J,,a. 

The effective action of the configuration 4 can now be defined as 

This quantity can be expanded as a Bylor series in a: 

where r(l;) 3 akr,/aakla=o. The leading term ro[4] coincides with the free action, 
while the higher derivatives can be calculated using our earlier results. 

For example 

The first and last terms cancel thanks to equation (26). Evaluated at a = 0, this 
erpressbe $e!ds 

r(l)[m] = ( ~ ( ' 1 ) ~  - ( ~ ( l ) ) ~  (30) 

where the subscripts indicate that appropriate source terms have been included so that 
the expectation value of the field is 6 or 0 respectively, and S(k) 3 akSs,/aa'~,,,. 

In most cases of interest, the only part of the action S,  which will be sensitive to 
the value of a is the potential term J d d z  Vo(4). We can then write 

_ _ _ I  I , ~ .  ^, \ .  
ir v,[q) IS u(n)-invariani then it can normaiiy by written as a iiiiear combii i~iht i  

of powers of 11411; in such cases our earlier result (8) yields an explicit expression 
for the expectation value in (31). Note that this method can be applied to potentials 
such as I I $ I 1 2 ( 1 + a )  in which the expansion parameter is an exponent, as well as more 
conventional potentials in which a acts as a coupling constant. Our approach can 
therefore be used to perform 6expansions [l]. 
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One can also calculate the higher derivatives of r',. 'RI obtain the next term, W e  

observe that 

Furthermore, 

6'W, = -1 ddx' (6 J (x )6J ( s f ) ) ,  (&), (%), (33) 

while the familiar identity Ja,m = 6r,/64 implies that 

One can also show that 

Setting (I = 0, and using the fact that 62W/6J21a,, is just the Green function, 
we obtain the result 

If the only a-dependent part of S, is the potential term, then 

(SW - (S(1))Z) + (S('))2 

= / d d z  ( V i 2 ) ) + / d d x d d z f  [(VL'))(V::)) -(V,"'V:t')] (37) 

where V(kl akVv,/aakl,,,. The expectation values in the integrands can be 
calculated using our earlier results, at least for O(n)-invariant theories, provided that 
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we know the matrix of correlation coefficients between +,(z) and +&(z’) .  If the free 
action has the form 

H C Luckock and A J McKane 

S(”’[441 = 4 1 d d z  [(V#J)’ + fi’44. 441 (38) 

then the correlation coefficient is found to be just 

p ( z , 4  = A(r)/A(o) (39) 

where T = llz - z’ll, 

1 
A(?) E - { ( ~ ( 2 ) . 4 4 ( z ‘ ) ) - ~ ( z ) . ~ ( z ‘ ) ]  n 

and where K d / 2 - l  is an associated Bessel function [2]. The divergence of A(0) does 
not present any problem if a suitable regularization scheme is used. (For example, 
one might replace A(0) by A(€) and eventually take the limit E + 0.) 

In conclusion, we remark that similar procedures can he used to obtain expressions 
for the higher-order terms in the effective action. In general, the kth derivative of 
re will reduce to a (!&)dimensional definite integral. 
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